Welcome to Lazy Predict’s documentation!

Installation

Stable release

To install Lazy Predict, run this command in your terminal:

$ pip install lazypredict

This is the preferred method to install Lazy Predict, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

From sources

The sources for Lazy Predict can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/shankarpandala/lazypredict

Or download the tarball:

$ curl -OJL https://github.com/shankarpandala/lazypredict/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Lazy Predict in a project:

import lazypredict

Classification

Example

from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
data = load_breast_cancer()
X = data.data
y= data.target
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.5,random_state =123)
clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = clf.fit(X_train, X_test, y_train, y_test)
models


| Model                          |   Accuracy |   Balanced Accuracy |   ROC AUC |   F1 Score |   Time Taken |
|:-------------------------------|-----------:|--------------------:|----------:|-----------:|-------------:|
| LinearSVC                      |   0.989474 |            0.987544 |  0.987544 |   0.989462 |    0.0150008 |
| SGDClassifier                  |   0.989474 |            0.987544 |  0.987544 |   0.989462 |    0.0109992 |
| MLPClassifier                  |   0.985965 |            0.986904 |  0.986904 |   0.985994 |    0.426     |
| Perceptron                     |   0.985965 |            0.984797 |  0.984797 |   0.985965 |    0.0120046 |
| LogisticRegression             |   0.985965 |            0.98269  |  0.98269  |   0.985934 |    0.0200036 |
| LogisticRegressionCV           |   0.985965 |            0.98269  |  0.98269  |   0.985934 |    0.262997  |
| SVC                            |   0.982456 |            0.979942 |  0.979942 |   0.982437 |    0.0140011 |
| CalibratedClassifierCV         |   0.982456 |            0.975728 |  0.975728 |   0.982357 |    0.0350015 |
| PassiveAggressiveClassifier    |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0130005 |
| LabelPropagation               |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0429988 |
| LabelSpreading                 |   0.975439 |            0.974448 |  0.974448 |   0.975464 |    0.0310006 |
| RandomForestClassifier         |   0.97193  |            0.969594 |  0.969594 |   0.97193  |    0.033     |
| GradientBoostingClassifier     |   0.97193  |            0.967486 |  0.967486 |   0.971869 |    0.166998  |
| QuadraticDiscriminantAnalysis  |   0.964912 |            0.966206 |  0.966206 |   0.965052 |    0.0119994 |
| HistGradientBoostingClassifier |   0.968421 |            0.964739 |  0.964739 |   0.968387 |    0.682003  |
| RidgeClassifierCV              |   0.97193  |            0.963272 |  0.963272 |   0.971736 |    0.0130029 |
| RidgeClassifier                |   0.968421 |            0.960525 |  0.960525 |   0.968242 |    0.0119977 |
| AdaBoostClassifier             |   0.961404 |            0.959245 |  0.959245 |   0.961444 |    0.204998  |
| ExtraTreesClassifier           |   0.961404 |            0.957138 |  0.957138 |   0.961362 |    0.0270066 |
| KNeighborsClassifier           |   0.961404 |            0.95503  |  0.95503  |   0.961276 |    0.0560005 |
| BaggingClassifier              |   0.947368 |            0.954577 |  0.954577 |   0.947882 |    0.0559971 |
| BernoulliNB                    |   0.950877 |            0.951003 |  0.951003 |   0.951072 |    0.0169988 |
| LinearDiscriminantAnalysis     |   0.961404 |            0.950816 |  0.950816 |   0.961089 |    0.0199995 |
| GaussianNB                     |   0.954386 |            0.949536 |  0.949536 |   0.954337 |    0.0139935 |
| NuSVC                          |   0.954386 |            0.943215 |  0.943215 |   0.954014 |    0.019989  |
| DecisionTreeClassifier         |   0.936842 |            0.933693 |  0.933693 |   0.936971 |    0.0170023 |
| NearestCentroid                |   0.947368 |            0.933506 |  0.933506 |   0.946801 |    0.0160074 |
| ExtraTreeClassifier            |   0.922807 |            0.912168 |  0.912168 |   0.922462 |    0.0109999 |
| CheckingClassifier             |   0.361404 |            0.5      |  0.5      |   0.191879 |    0.0170043 |
| DummyClassifier                |   0.512281 |            0.489598 |  0.489598 |   0.518924 |    0.0119965 |

Regression

Example

from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np
boston = datasets.load_boston()
X, y = shuffle(boston.data, boston.target, random_state=13)
X = X.astype(np.float32)
offset = int(X.shape[0] * 0.9)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]
reg = LazyRegressor(verbose=0,ignore_warnings=False, custom_metric=None )
models,predictions = reg.fit(X_train, X_test, y_train, y_test)


| Model                         |   R-Squared |     RMSE |   Time Taken |
|:------------------------------|------------:|---------:|-------------:|
| SVR                           |   0.877199  |  2.62054 |    0.0330021 |
| RandomForestRegressor         |   0.874429  |  2.64993 |    0.0659981 |
| ExtraTreesRegressor           |   0.867566  |  2.72138 |    0.0570002 |
| AdaBoostRegressor             |   0.865851  |  2.73895 |    0.144999  |
| NuSVR                         |   0.863712  |  2.7607  |    0.0340044 |
| GradientBoostingRegressor     |   0.858693  |  2.81107 |    0.13      |
| KNeighborsRegressor           |   0.826307  |  3.1166  |    0.0179954 |
| HistGradientBoostingRegressor |   0.810479  |  3.25551 |    0.820995  |
| BaggingRegressor              |   0.800056  |  3.34383 |    0.0579946 |
| MLPRegressor                  |   0.750536  |  3.73503 |    0.725997  |
| HuberRegressor                |   0.736973  |  3.83522 |    0.0370018 |
| LinearSVR                     |   0.71914   |  3.9631  |    0.0179989 |
| RidgeCV                       |   0.718402  |  3.9683  |    0.018003  |
| BayesianRidge                 |   0.718102  |  3.97041 |    0.0159984 |
| Ridge                         |   0.71765   |  3.9736  |    0.0149941 |
| LinearRegression              |   0.71753   |  3.97444 |    0.0190051 |
| TransformedTargetRegressor    |   0.71753   |  3.97444 |    0.012001  |
| LassoCV                       |   0.717337  |  3.9758  |    0.0960066 |
| ElasticNetCV                  |   0.717104  |  3.97744 |    0.0860076 |
| LassoLarsCV                   |   0.717045  |  3.97786 |    0.0490005 |
| LassoLarsIC                   |   0.716636  |  3.98073 |    0.0210001 |
| LarsCV                        |   0.715031  |  3.99199 |    0.0450008 |
| Lars                          |   0.715031  |  3.99199 |    0.0269964 |
| SGDRegressor                  |   0.714362  |  3.99667 |    0.0210009 |
| RANSACRegressor               |   0.707849  |  4.04198 |    0.111998  |
| ElasticNet                    |   0.690408  |  4.16088 |    0.0190012 |
| Lasso                         |   0.662141  |  4.34668 |    0.0180018 |
| OrthogonalMatchingPursuitCV   |   0.591632  |  4.77877 |    0.0180008 |
| ExtraTreeRegressor            |   0.583314  |  4.82719 |    0.0129974 |
| PassiveAggressiveRegressor    |   0.556668  |  4.97914 |    0.0150032 |
| GaussianProcessRegressor      |   0.428298  |  5.65425 |    0.0580051 |
| OrthogonalMatchingPursuit     |   0.379295  |  5.89159 |    0.0180039 |
| DecisionTreeRegressor         |   0.318767  |  6.17217 |    0.0230272 |
| DummyRegressor                |  -0.0215752 |  7.55832 |    0.0140116 |
| LassoLars                     |  -0.0215752 |  7.55832 |    0.0180008 |
| KernelRidge                   |  -8.24669   | 22.7396  |    0.0309792 |

Warning

Regression and Classification are replaced with LazyRegressor and LazyClassifier. Regression and Classification classes will be removed in next release

Indices and tables